
A Substructural Modal Type Theory to handle
Mobility Failures in Distributed Computing

Giuseppe Primiero

Department of Computer Science
Middlesex University
G.Primiero@mdx.ac.uk

Error detection and fault tolerance in software systems are well-studied no-
tions since the 70’s in the context of engineered systems for resource sharing,
resource typing and accessibility [9, 5, 22, 6, 7]. In these contexts, error-resolution
consists in affected service identification and restart.

From the programming viewpoint, functional languages without side-effects
limit the damage caused by failing computations and restarting them can be
performed without multiple updates. A typical example of the standard strat-
egy of re-evaluation of referentially transparent expressions to implement fault-
tolerance is Erlang [3, 2].

Formal systems to study validity and satisfiability under failure conditions
are limited in number and approaches. Semantically, Propositional Dynamic
Error Logic, an extension of Propositional Dynamic Logic PDL [11], offers a la-
belled transition system including an error state, but it does not provide recovery
means. Syntactically, typing systems are more common for implementations in
distributed programming where failures can occur: type-checking and inference
mechanisms for data sharing, [15]; systems for sound computations with explic-
itly distributed data structures, [14]; session types to mimic and check broadcast-
ing with and without end-to-end reliable communication, [13, 10]; modal types
to model mobile computing, [18]. In general, all failure mechanisms in type sys-
tems are expressed as forms of abortion procedures, reflecting the kill-and-restart
strategy. In a typed natural deduction system, for example, the standard rule
for falsehood (formally a negation introduction, corresponding to contradiction
elimination) can be formulated as an instruction to abort a process, see e.g. [20]:

𝛥;𝛤 ⊢ 𝑚 :⊥
𝛥;𝛤 ⊢ 𝐴𝐵𝑂𝑅𝑇 (𝑚) :𝛼

This rule preserves correctness in a normalisation process, but it forbids any
attempt at identifying and resolving the source of error.

Failures of mobility are an interesting and important sub-class of the several
typologies of errors occurring in mobile and distributed computing. They do not
seem to require necessarily abortion processes, as errors of typing do. Previous
works on constructive modalities [4, 1] with applications to type theories [21,
19] and distributed systems [16, 8, 17, 18, 12] offer a possile basis for a syntactic
investigation of failures in mobile distributed computing. We present a substruc-
tural modal type theory to reason about mobility failures and their resolutions.
Our strategy is given in three steps:



1. we formulate a language with indexed processes for valid code and values;
2. we enrich the language with the means for mobility of code and values via

modal-style functions;
3. we consider functions for mobility failures and their resolution, and for un-

resolvable errors.

The substructural nature of the language highlights some important aspects of
failure-prone mobile computing:

– failure of commutativity indicates that resource allocation is relevant in view
of mobility rules;

– failure of weakening indicates that (sufficiently complete) resource redun-
dancy at locations guarantees availability of a resolution strategy;

– finally, failure of contraction shows that location redundancy is not trivial.

We present first a simple explanatory example, introduce rules for failures of
mobility with appropriate handling procedures, and a standard abort rule. We
formulate meta-theoretical properties of error expressions, show local soundness
and completeness and prove termination of resolution or failure.

References

1. N. Alechina, M. Mendler, V. de Paiva, and E. Ritter. Categorical and Kripke Se-
mantics for Constructive S4 Modal Logic. In Proceedings of the 15th International
Workshop on Computer Science Logic, volume 2142 of Lecture Notes In Computer
Science, pages 292 – 307, 2001.

2. Joe Armstrong. Making reliable distributed systems in the presence of software
errors. PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 2003.

3. Joe Armstrong. Erlang. Commun. ACM, 53(9):68–75, September 2010.
4. G.M. Bierman and V. de Paiva. On an Intuitionistic Modal Logic. Studia Logica,

(65):383–416, 2000.
5. F. Cristian. Exception Handling and Software Fault-Tolerance. IEEE Transactions

on Computers, C-31:531–540, 1982.
6. F. Cristian. A rigorous Approach to Fault-Tolerant Programming. IEEE Trans-

actions on Software Engineering, SE-11:23–31, 1985.
7. F. Cristian. Understanding Fault-Tolerant Systems. Commun. ACM, 34:56–78,

1991.
8. R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of

the ACM, 48(3):555–604, 2001.
9. J.B. Goodenough. Exception handling: issues and a proposed notation. Commun.

ACM, 8:683–696, 1975.
10. Ramnas Gutkovas, Dimitrios Kouzapas, and Simon J. Gay. A session type system

for unreliable broadcast communication.
11. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, Cam-

bridge, MA, 2000.
12. L. Jia and D. Walker. Modal Proofs as Distributed Programs. In Programming

Languages and Systems, ESOP2004, volume 2986 of Lectures Notes in Computer
Science. Springer Verlag, 2004.



13. Dimitrios Kouzapas, Ramunas Gutkovas, and Simon J. Gay. Session types for
broadcasting. In Alastair F. Donaldson and Vasco T. Vasconcelos, editors, Pro-
ceedings 7th Workshop on Programming Language Approaches to Concurrency
and Communication-cEntric Software, PLACES 2014, Grenoble, France, 12 April
2014., volume 155 of EPTCS, pages 25–31, 2014.

14. Ben Liblit and Alexander Aiken. Type systems for distributed data structures.
In Mark N. Wegman and Thomas W. Reps, editors, POPL 2000, Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Boston, Massachusetts, USA, January 19-21, 2000, pages 199–213.
ACM, 2000.

15. Ben Liblit, Alexander Aiken, and Katherine A. Yelick. Type systems for distributed
data sharing. In Radhia Cousot, editor, Static Analysis, 10th International Sym-
posium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings, volume
2694 of Lecture Notes in Computer Science, pages 273–294. Springer, 2003.

16. J. Moody. Modal logic as a basis for distributed computation. Technical Report
CMU-CS-03-194, School of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA, USA, 2003.

17. T. Murphy. Modal Types for Mobile Code. PhD thesis, School of Computer Science,
Carnegie Mellon University, 2008. CMU-CS-08-126.

18. T. Murphy, K. Crary, and R. Harper. Type-Safe Distributed Programming with
ML5, volume 4912 of Lectures Notes in Computer Science, pages 108–123. Springer
Verlag, 2008.

19. A. Nanevski, F. Pfenning, and B. Pientka. Contextual Modal Type Theory. ACM
Transactions on Computational Logic, 9(3):1–48, 2008.

20. F. Pfenning. Constructive Logic. Carnegie Mellon University, draft of december
28, 2000 edition, December 2000.

21. F. Pfenning and R. Davies. A judgemental reconstruction of modal logic. Mathe-
matical Structures in Computer Science, 11:511–540, 2001.

22. D.A. Rennels. Fault-Tolerant Computing - Concepts and Examples. IEEE Trans-
actions on Computers, C-33:1116–1129, 1984.


