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Error detection and fault tolerance in software systems are well-studied no-
tions since the 70’s in the context of engineered systems for resource sharing,
resource typing and accessibility [9, 5, 22, 6, 7]. In these contexts, error-resolution
consists in affected service identification and restart.

From the programming viewpoint, functional languages without side-effects
limit the damage caused by failing computations and restarting them can be
performed without multiple updates. A typical example of the standard strat-
egy of re-evaluation of referentially transparent expressions to implement fault-
tolerance is Erlang [3, 2].

Formal systems to study validity and satisfiability under failure conditions
are limited in number and approaches. Semantically, Propositional Dynamic
Error Logic, an extension of Propositional Dynamic Logic PDL [11], offers a la-
belled transition system including an error state, but it does not provide recovery
means. Syntactically, typing systems are more common for implementations in
distributed programming where failures can occur: type-checking and inference
mechanisms for data sharing, [15]; systems for sound computations with explic-
itly distributed data structures, [14]; session types to mimic and check broadcast-
ing with and without end-to-end reliable communication, [13, 10]; modal types
to model mobile computing, [18]. In general, all failure mechanisms in type sys-
tems are expressed as forms of abortion procedures, reflecting the kill-and-restart
strategy. In a typed natural deduction system, for example, the standard rule
for falsehood (formally a negation introduction, corresponding to contradiction
elimination) can be formulated as an instruction to abort a process, see e.g. [20]:

𝛥;𝛤 ⊢ 𝑚 :⊥
𝛥;𝛤 ⊢ 𝐴𝐵𝑂𝑅𝑇 (𝑚) :𝛼

This rule preserves correctness in a normalisation process, but it forbids any
attempt at identifying and resolving the source of error.

Failures of mobility are an interesting and important sub-class of the several
typologies of errors occurring in mobile and distributed computing. They do not
seem to require necessarily abortion processes, as errors of typing do. Previous
works on constructive modalities [4, 1] with applications to type theories [21,
19] and distributed systems [16, 8, 17, 18, 12] offer a possile basis for a syntactic
investigation of failures in mobile distributed computing. We present a substruc-
tural modal type theory to reason about mobility failures and their resolutions.
Our strategy is given in three steps:



1. we formulate a language with indexed processes for valid code and values;
2. we enrich the language with the means for mobility of code and values via

modal-style functions;
3. we consider functions for mobility failures and their resolution, and for un-

resolvable errors.

The substructural nature of the language highlights some important aspects of
failure-prone mobile computing:

– failure of commutativity indicates that resource allocation is relevant in view
of mobility rules;

– failure of weakening indicates that (sufficiently complete) resource redun-
dancy at locations guarantees availability of a resolution strategy;

– finally, failure of contraction shows that location redundancy is not trivial.

We present first a simple explanatory example, introduce rules for failures of
mobility with appropriate handling procedures, and a standard abort rule. We
formulate meta-theoretical properties of error expressions, show local soundness
and completeness and prove termination of resolution or failure.
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