Remarks on the Exponential Rules in Linear Logic

Timo Lang

February 27, 2018

This talk is about:

- An observation on exponentials
- A related conjecture
- A proof of a special case of the conjecture

$\mathsf{AIL}=\mathsf{Intuitionistic}\ \mathsf{Linear}\ \mathsf{Logic}\ \mathsf{with}\ \mathsf{Weakening}$

$$A \multimap B \qquad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \multimap B} (\multimap R) \qquad \frac{\Gamma_1 \Rightarrow A \qquad \Gamma_2, B \Rightarrow C}{\Gamma_1, \Gamma_2, A \multimap B \Rightarrow C} (\multimap L)$$

$$A \lor B \qquad \frac{\Gamma \Rightarrow A_i}{\Gamma \Rightarrow A_1 \lor A_2} (\lor Ri)_{i=1,2} \qquad \frac{\Gamma, A \Rightarrow C \qquad \Gamma, B \Rightarrow C}{\Gamma, A \lor B \Rightarrow C} (\lor L)$$

$$A \land B \qquad \frac{\Gamma \Rightarrow A \qquad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \land B} (\land R) \qquad \frac{\Gamma, A_i \Rightarrow B}{\Gamma, A_1 \land A_2 \Rightarrow B} (\land L)_{i=1,2}$$

$$A \otimes B \qquad \frac{\Gamma_1 \Rightarrow A \qquad \Gamma_2 \Rightarrow B}{\Gamma_1, \Gamma_2 \Rightarrow A \otimes B} (\otimes R) \qquad \frac{\Gamma, A, B \Rightarrow C}{\Gamma, A \otimes B \Rightarrow C} (\otimes L)$$

$$!A \quad \frac{\Gamma, !A, !A \Rightarrow B}{\Gamma, !A \Rightarrow B} (!c) \quad \frac{\Gamma, A \Rightarrow B}{\Gamma, !A \Rightarrow B} (!dr) \quad \frac{!\Gamma \Rightarrow A}{!\Gamma \Rightarrow !A} (!pr)$$

 $A \wedge B$ One resource: Either A or B by my choice: LHS by your choice: RHS $A \otimes B$ Two resources: Both A and B $A \multimap B$ A one-time usable function turning resources A into resources B !A arbitrarily often/unbounded A

$$\Gamma \Rightarrow A$$

From resources Γ , one can obtain (at least) the resource A

Is $!A = A \otimes A \otimes A \otimes A \otimes A$...?

$$\mathsf{Is} \; !A = A \otimes A \otimes A \otimes A \dots ?$$

$$\mathsf{Is } !A = A \otimes A \otimes A \otimes A \dots ?$$

" \Rightarrow " **AIL** proves $!A \Rightarrow A^{\otimes n}$ for any *n*:

$$\mathsf{Is } !A = A \otimes A \otimes A \otimes A \dots ?$$

-

$$\frac{\Gamma_1 \Rightarrow A \qquad \dots \qquad \Gamma_n \Rightarrow A}{\Gamma_1, \dots, \Gamma_n \Rightarrow A^{\otimes n}}$$

" \Rightarrow " **AIL** proves $!A \Rightarrow A^{\otimes n}$ for any *n*:

" \Leftarrow " fails. More precisely:

" \Leftarrow " fails. More precisely: There are Γ , *A* such that

AIL $\vdash \Gamma \Rightarrow A^{\otimes n}$ for all *n*

but

 $\mathsf{AIL} \nvDash \Gamma \Rightarrow !A$

$$\mathsf{AIL} \vdash D, !(D \multimap C \otimes D) \Rightarrow C^{\otimes n} \text{ for all } n$$

$$\mathsf{AIL} \vdash D, !(D \multimap C \otimes D) \Rightarrow C^{\otimes n}$$
 for all n

$$\frac{C, D, !(D \multimap C \otimes D) \Rightarrow C}{C \otimes D, !(D \multimap C \otimes D) \Rightarrow C} (\otimes L)$$

$$\frac{D \Rightarrow D}{C \otimes D, !(D \multimap C \otimes D) \Rightarrow C} (-L)$$

$$\frac{D, D \multimap C \otimes D, !(D \multimap C \otimes D) \Rightarrow C}{D, !(D \multimap C \otimes D) \Rightarrow C} (dr)$$

$$\frac{D, D \multimap C \otimes D, !(D \multimap C \otimes D) \Rightarrow C}{D, !(D \multimap C \otimes D) \Rightarrow C} (c)$$

$$\mathsf{AIL} \vdash D, !(D \multimap C \otimes D) \Rightarrow C^{\otimes n}$$
 for all n

$$\mathsf{AIL} \vdash D, !(D \multimap C \otimes D) \Rightarrow C^{\otimes n} \text{ for all } n$$

$$\frac{C \Rightarrow C \qquad \dots \qquad C \Rightarrow C}{C^{(n)} \Rightarrow C^{\otimes n}} \text{ (weak)}$$
$$\frac{C^{(n)}, D, !(D \multimap C \otimes D) \Rightarrow C^{\otimes n}}{\vdots (n-2) \times Q} \text{ (veak)}$$
$$\frac{\vdots (n-2) \times Q}{C, C, D, !(D \multimap C \otimes D) \Rightarrow C^{\otimes n}}$$
$$\frac{\vdots Q}{C, D, !(D \multimap C \otimes D) \Rightarrow C^{\otimes n}}$$
$$\frac{\vdots Q}{D, !(D \multimap C \otimes D) \Rightarrow C^{\otimes n}}$$

But:

$\mathsf{AIL} \nvDash D, !(D \multimap C \otimes D) \Rightarrow !C$

But:

$\mathsf{AIL} \nvDash D, !(D \multimap C \otimes D) \Rightarrow !C$

$$\frac{!\Gamma \Rightarrow A}{!\Gamma \Rightarrow !A} (!pr)$$

• What can we say about (Γ, A) such that

$$\mathbf{AIL} \vdash \Gamma \Rightarrow A^{\otimes n} \quad \text{for all } n$$

and the corresponding sequences of proofs

$$P_n \vdash \Gamma \Rightarrow A^{\otimes n}$$
 ?

• What can we say about (Γ, A) such that

$$\mathsf{AIL} \vdash \Gamma \Rightarrow A^{\otimes n} \quad \text{for all } n$$

and the corresponding sequences of proofs

$$P_n \vdash \Gamma \Rightarrow A^{\otimes n}$$
 ?

• Trivial case (1): $\Gamma = !\Gamma'$

• What can we say about (Γ, A) such that

$$\mathsf{AIL} \vdash \Gamma \Rightarrow A^{\otimes n} \quad \text{for all } n$$

and the corresponding sequences of proofs

$$P_n \vdash \Gamma \Rightarrow A^{\otimes n}$$
 ?

• Trivial case (1): $\Gamma = !\Gamma'$ $Q \qquad \vdots \qquad \vdots \\ !\Gamma' \Rightarrow A \qquad \underbrace{\frac{!\Gamma' \Rightarrow A \qquad ... \qquad !\Gamma' \Rightarrow A}{(!\Gamma')^{(n)} \Rightarrow A^{\otimes n}}}_{\underline{(!\Gamma')^{(n)} \Rightarrow A^{\otimes n}} !c}$ • Trivial case (2): $\Gamma = \emptyset$ $\Rightarrow A^{\otimes n}$

• Similarily,

$$P_1 \vdash D, !(D \multimap C \otimes D) \Rightarrow C$$

has repeatable parts.

$$P_1 \vdash D, !(D \multimap C \otimes D) \Rightarrow C$$

has repeatable parts.

• But:

$$P_n \vdash C^{\otimes 20}, D, !(D \multimap C \otimes D) \Rightarrow C^{\otimes n}$$

does not necessarily have repeatable parts unless n > 20.

Conjecture

Let Γ be a multiset of formulas and A a formula. Let $d = maxdepth(\Gamma)$ and $n = |\Gamma| \cdot 2^d + 1$. Then any proof

$$P \vdash \Gamma \Rightarrow A^{\otimes n}$$

has "enough repeatable parts" to generalize to a recursive sequence (P_k)

$$P_k \vdash \Gamma \Rightarrow A^{\otimes k} \quad \forall k \ge n$$

Conjecture

Let Γ be a multiset of formulas and A a formula. Let $d = maxdepth(\Gamma)$ and $n = |\Gamma| \cdot 2^d + 1$. Then any proof

$$\mathsf{P} \vdash \mathsf{\Gamma} \Rightarrow A^{\otimes n}$$

has "enough repeatable parts" to generalize to a recursive sequence (P_k)

$$P_k \vdash \Gamma \Rightarrow A^{\otimes k} \quad \forall k \ge n$$

(?)Corollary

If **AIL**
$$\vdash \Gamma \Rightarrow A^{\otimes n}$$
 for $|\Gamma| \cdot 2^d + 1$, then **AIL** $\vdash \Gamma \Rightarrow A^{\otimes k}$ for all k.

(?)Corollary

If there is a sequence (P_n) such that if $P_n \vdash \Gamma \Rightarrow A^{\otimes n}$ for all n, then there is a recursive such sequence.

Proposition

Let Γ be a multiset of formulas not containing \multimap and A a formula. Let $d = maxdepth(\Gamma)$ and $n = |\Gamma| \cdot 2^d + 1$. Then any proof

$$P \vdash \Gamma \Rightarrow A^{\otimes n}$$

has enough repeatable parts to generalize to a recursive sequence (P_k)

$$P_k \vdash \Gamma \Rightarrow A^{\otimes k} \quad \forall k \ge n$$

• $\Gamma_1^i, \ldots, \Gamma_n^i$ splitting sequence

 only rule below splitting sequences: (∧L),(∨L),(⊗L),(!c),(!dR) (no weakening) **F**-grammar

Every splitting sequence in P is generated by the following grammar:

$$N = \mathbf{S} \cup \{\mathbf{A} \mid A \in Subf(\Gamma)\}$$
$$T = Subf(\Gamma)$$

Production rules:

$$\begin{split} & \mathsf{S} \mapsto \mathsf{A}_1 \dots \mathsf{A}_n \\ & \mathsf{A} \lor \mathsf{B} \mapsto \mathsf{A} \, | \, \mathsf{B} \\ & \mathsf{A} \land \mathsf{B} \mapsto \mathsf{A} \, | \, \mathsf{B} \\ & \mathsf{A} \land \mathsf{B} \mapsto \mathsf{A} \, \mathsf{B} \\ & \mathsf{A} \otimes \mathsf{B} \mapsto \mathsf{A} \, \mathsf{B} \\ & \mathsf{!A} \mapsto \mathsf{!A} \, | \, \mathsf{A} \, | \, \mathsf{A} \\ & \mathsf{A} \mapsto \mathsf{A} \end{split}$$

where $\Gamma = A_1, \ldots, A_n$

• We want many !'s in the Γ-parsing trees of splitting sequences

- We want many !'s in the Γ-parsing trees of splitting sequences
- Child nodes in the parsing tree are proper subformulas of their parent node, unless the production rule is !*B* →!*B*!*B*.

- We want many !'s in the Γ-parsing trees of splitting sequences
- Child nodes in the parsing tree are proper subformulas of their parent node, unless the production rule is !*B* →!*B*!*B*.
- Let d = maxdepth(Γ)

- We want many !'s in the Γ-parsing trees of splitting sequences
- Child nodes in the parsing tree are proper subformulas of their parent node, unless the production rule is !*B* →!*B*!*B*.
- Let d = maxdepth(Γ)
- Every branch in the parsing tree of length > d traverses a production $!B \mapsto !B!B$.

- We want many !'s in the Γ-parsing trees of splitting sequences
- Child nodes in the parsing tree are proper subformulas of their parent node, unless the production rule is !*B* →!*B*!*B*.
- Let d = maxdepth(Γ)
- Every branch in the parsing tree of length > d traverses a production $!B \mapsto !B!B.$
- The number of short ($\leq d$) paths in Γ -parsing trees is bound by

 $|\Gamma| \cdot 2^d$

• Exclude a trivial case: **AIL** \vdash (\Rightarrow *A*).

Almost there!

• Exclude a trivial case: **AIL** \vdash (\Rightarrow *A*).

• Then: $\Gamma_1^i, \ldots, \Gamma_n^i$ splitting sequence in $P \implies \Gamma_i^i \neq \emptyset$

$$P_j^i$$

$$\vdots$$

$$i_j^j \Rightarrow A$$

Г

Almost there!

- Exclude a trivial case: **AIL** \vdash (\Rightarrow *A*).
- Then: $\Gamma_1^i, \ldots, \Gamma_n^i$ splitting sequence in $P \implies \Gamma$

$$\Gamma^i_j \neq \emptyset$$

$$\vdots$$

 $\Gamma_j^i \Rightarrow A$

 P_i^i

• Recall $n > |\Gamma| \cdot 2^d$

- Exclude a trivial case: **AIL** \vdash (\Rightarrow *A*).
- Then: $\Gamma_1^i, \ldots, \Gamma_n^i$ splitting sequence in $P \implies \Gamma_i^i \neq \emptyset$

$$\Gamma^i_j \Rightarrow A$$

 P'_i

- Recall $n > |\Gamma| \cdot 2^d$
- By the pidgeonhole principle, every splitting sequence $\Gamma_1^i, \ldots, \Gamma_n^i$ contains a $\Gamma_{k_i}^i$ such that all formulas in $\Gamma_{k_i}^i$ have long branches in the parsing tree

- Exclude a trivial case: **AIL** \vdash (\Rightarrow *A*).
- Then: $\Gamma_1^i, \ldots, \Gamma_n^i$ splitting sequence in $P \implies \Gamma_i^i \neq \emptyset$

$$\Gamma^i_j \Rightarrow$$

- Recall $n > |\Gamma| \cdot 2^d$
- By the pidgeonhole principle, every splitting sequence $\Gamma_1^i, \ldots, \Gamma_n^i$ contains a $\Gamma_{k_i}^i$ such that all formulas in $\Gamma_{k_i}^i$ have long branches in the parsing tree

 P'_i

Α

• All formulas in $\Gamma_{k_i}^i$ can be duplicated!

WLOG $\Gamma_{k_i}^i = \Gamma_1^i$

Conjecture

Let Γ be a multiset of formulas and A a formula. Let $d = maxdepth(\Gamma)$ and $n = |\Gamma| \cdot 2^d + 1$. Then any proof

$$P \vdash \Gamma \Rightarrow A^{\otimes n}$$

has "enough repeatable parts" to generalize to a recursive sequence (P_k)

$$P_k \vdash \Gamma \Rightarrow A^{\otimes k} \quad \forall k \ge n$$

Conjecture

Let Γ be a multiset of formulas and A a formula. Let $d = maxdepth(\Gamma)$ and $n = |\Gamma| \cdot 2^d + 1$. Then any proof

$$P \vdash \Gamma \Rightarrow A^{\otimes n}$$

has "enough repeatable parts" to generalize to a recursive sequence (P_k)

$$P_k \vdash \Gamma \Rightarrow A^{\otimes k} \quad \forall k \ge n$$

If yes, the infinitary rule

$$\frac{\Gamma \Rightarrow A \qquad \Gamma \Rightarrow A \otimes A \qquad \Gamma \Rightarrow A \otimes A \otimes A \qquad \dots}{\Gamma \Rightarrow \omega \cdot A}$$

is simulated by the finitary rule

$$\frac{\Gamma \Rightarrow A^{\otimes n}}{\Gamma \Rightarrow \omega \cdot A}$$

for large enough n.

Timo Lang

February 27, 2018 21 / 21