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This talk is about:

An observation on exponentials

A related conjecture

A proof of a special case of the conjecture
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The Logical Framework

AIL = Intuitionistic Linear Logic with Weakening

A( B
Γ,A⇒ B

((R)
Γ⇒ A( B

Γ1 ⇒ A Γ2,B ⇒ C
((L)

Γ1, Γ2,A( B ⇒ C

A ∨ B
Γ⇒ Ai (∨Ri)i=1,2

Γ⇒ A1 ∨ A2

Γ,A⇒ C Γ,B ⇒ C
(∨L)

Γ,A ∨ B ⇒ C

A ∧ B Γ⇒ A Γ⇒ B (∧R)
Γ⇒ A ∧ B

Γ,Ai ⇒ B
(∧L)i=1,2

Γ,A1 ∧ A2 ⇒ B

A⊗ B
Γ1 ⇒ A Γ2 ⇒ B

(⊗R)
Γ1, Γ2 ⇒ A⊗ B

Γ,A,B ⇒ C
(⊗L)

Γ,A⊗ B ⇒ C
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The exponential

!A
Γ, !A, !A⇒ B

(!c)
Γ, !A⇒ B

Γ,A⇒ B
(!dr)

Γ, !A⇒ B
!Γ⇒ A (!pr)
!Γ⇒!A

Timo Lang Remarks on the Exponential Rules in Linear Logic February 27, 2018 4 / 21



Formulas as resources

A ∧ B One resource: Either A or B
by my choice: LHS
by your choice: RHS

A⊗ B Two resources: Both A and B

A( B A one-time usable function
turning resources A into resources B

!A arbitrarily often/unbounded A

Γ⇒ A
From resources Γ, one can obtain (at least) the resource A
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Question

Is !A = A⊗ A⊗ A⊗ A . . .?

A⊗n := A⊗ . . .⊗ A︸ ︷︷ ︸
n times

A(n) := A, . . . ,A︸ ︷︷ ︸
n times

Γ1 ⇒ A . . . Γn ⇒ A

Γ1, . . . , Γn ⇒ A⊗n

“ ⇒” AIL proves !A⇒ A⊗n for any n:

A⇒ A . . . A⇒ A

A(n) ⇒ A⊗n
n times (!dr)

(!A)(n) ⇒ A⊗n
n times (!c)

!A⇒ A⊗n
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“ ⇐” fails. More precisely:

There are Γ,A such that

AIL ` Γ⇒ A⊗n for all n

but
AIL 0 Γ⇒!A
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The generous coffee machine

AIL ` D, !(D ( C ⊗ D)⇒ C⊗n for all n

}
Q
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C ⇒ C . . . C ⇒ C

C (n) ⇒ C⊗n (weak)
C (n),D, !(D ( C ⊗ D)⇒ C⊗n

... (n − 2)× Q

C ,C ,D, !(D ( C ⊗ D)⇒ C⊗n

... Q

C ,D, !(D ( C ⊗ D)⇒ C⊗n

... Q

D, !(D ( C ⊗ D)⇒ C⊗n
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But:

AIL 0 D, !(D ( C ⊗ D)⇒!C

!Γ⇒ A (!pr)
!Γ⇒!A
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What can we say about (Γ,A) such that

AIL ` Γ⇒ A⊗n for all n

and the corresponding sequences of proofs

Pn ` Γ⇒ A⊗n ?

Trivial case (1): Γ =!Γ′

Q
...

!Γ′ ⇒ A

 

Q
...

!Γ′ ⇒ A . . .

Q
...

!Γ′ ⇒ A

(!Γ′)(n) ⇒ A⊗n
!c

!Γ′ ⇒ A⊗n

Trivial case (2): Γ = ∅

Q
...
⇒ A

 

Q
...
⇒ A . . .

Q
...
⇒ A

⇒ A⊗n
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Similarily,
P1 ` D, !(D ( C ⊗ D)⇒ C

has repeatable parts.

But:
Pn ` C⊗20,D, !(D ( C ⊗ D)⇒ C⊗n

does not necessarily have repeatable parts unless n > 20.
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Conjecture

Let Γ be a multiset of formulas and A a formula. Let d = maxdepth(Γ)
and n = |Γ| · 2d + 1.
Then any proof

P ` Γ⇒ A⊗n

has “enough repeatable parts” to generalize to a recursive sequence (Pk)

Pk ` Γ⇒ A⊗k ∀k ≥ n

(?)Corollary

If AIL ` Γ⇒ A⊗n for |Γ| · 2d + 1, then AIL ` Γ⇒ A⊗k for all k.

(?)Corollary

If there is a sequence (Pn) such that if Pn ` Γ⇒ A⊗n for all n, then there
is a recursive such sequence.
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Proposition

Let Γ be a multiset of formulas not containing ( and A a formula. Let
d = maxdepth(Γ) and n = |Γ| · 2d + 1.
Then any proof

P ` Γ⇒ A⊗n

has enough repeatable parts to generalize to a recursive sequence (Pk)

Pk ` Γ⇒ A⊗k ∀k ≥ n
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A normal form

Γ⇒ A⊗n

Pk
1

...

Γk
1 ⇒ A . . .

Pk
n

...

Γk
n ⇒ A

Γk
1 , . . . , Γk

n⇒ A⊗n

...

P1
1

...

Γ1
1 ⇒ A . . .

P1
n

...

Γ1
n ⇒ A

Γ1
1, . . . , Γ1

n⇒ A⊗n

Γi
1, . . . , Γi

n splitting sequence

only rule below splitting sequences: (∧L),(∨L),(⊗L),(!c),(!dR)
(no weakening)
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Γ-grammar

Every splitting sequence in P is generated by the following grammar:

N = S ∪ {A | A ∈ Subf (Γ)}
T = Subf (Γ)

Production rules:

S 7→ A1 . . .An where Γ = A1, . . . ,An

A∨ B 7→ A |B
A∧ B 7→ A |B
A⊗ B 7→ AB

!A 7→!A !A |A
A 7→ A
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parsing tree

S

!(C∨D)⊗ E

!(C∨D)

C∨D

C

C

E

E

proof C ,E⇒ A⊗n

Q
...

D,E ⇒ A⊗n

C ∨ D,E ⇒ A⊗n

!(C ∨ D),E ⇒ A⊗n

!(C ∨ D)⊗ E ⇒ A⊗n
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We want many !’s in the Γ-parsing trees of splitting sequences

Child nodes in the parsing tree are proper subformulas of their parent
node, unless the production rule is !B 7→!B!B.

Let d = maxdepth(Γ)

Every branch in the parsing tree of length > d traverses a production
!B 7→!B!B.

The number of short (≤ d) paths in Γ-parsing trees is bound by

|Γ| · 2d
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Almost there!

Exclude a trivial case: AIL ` (⇒ A).

Then: Γi
1, . . . , Γi

n splitting sequence in P ⇒ Γi
j 6= ∅

P i
j

...

Γi
j ⇒ A

Recall n > |Γ| · 2d

By the pidgeonhole principle, every splitting sequence Γi
1, . . . , Γi

n

contains a Γi
ki

such that all formulas in Γi
ki

have long branches in the
parsing tree

All formulas in Γi
ki

can be duplicated!
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The full picture

WLOG Γi
ki

= Γi
1

Γ⇒ A⊗n

Pk
1

...

Γk
1 ⇒ A . . .

Pk
n

...

Γk
n ⇒ A

Γk
1 , . . . , Γk

n⇒ A⊗n

...

P1
1

...

Γ1
1 ⇒ A . . .

P1
n

...

Γ1
n ⇒ A

Γ1
1, . . . , Γ1

n⇒ A⊗n

Timo Lang Remarks on the Exponential Rules in Linear Logic February 27, 2018 20 / 21



The full picture

WLOG Γi
ki

= Γi
1
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Recap

Conjecture

Let Γ be a multiset of formulas and A a formula. Let d = maxdepth(Γ)
and n = |Γ| · 2d + 1.
Then any proof

P ` Γ⇒ A⊗n

has “enough repeatable parts” to generalize to a recursive sequence (Pk)

Pk ` Γ⇒ A⊗k ∀k ≥ n

If yes, the infinitary rule

Γ⇒ A Γ⇒ A⊗ A Γ⇒ A⊗ A⊗ A . . .
Γ⇒ ω · A

is simulated by the finitary rule

Γ⇒ A⊗n

Γ⇒ ω · A
for large enough n.
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