Arnon Avron School of Computer Science Tel Aviv University

Purely Relevant Logics with Contraction and Its Converse

Second SYSMICS Workshop Vienna, 2018

What is a Substructural Propositional Logic?

- Each connective of the language has a classical counterpart.
- The consequence relation can be defined using a Gentzen-type system having two types of rules:

Structural Rules: Do not involve any specific connective Logical Rules: Each involving exactly one connective.

• The set of rules for each of the connectives is adequate for its classical counterpart.

Some Structural Rules

Weakening:

$$\frac{\Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta}$$

$$\frac{\Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \varphi}$$

Contraction:

$$\frac{\varphi, \varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta}$$

$$\frac{\varphi, \varphi, \Gamma \Rightarrow \Delta}{\varphi, \Gamma \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \Delta, \varphi, \varphi}{\Gamma \Rightarrow \Delta, \varphi}$$

Expansion:

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi, \varphi, \Gamma \Rightarrow \Delta}$$

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi, \varphi, \Gamma \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \varphi, \varphi}$$

Mingle:

$$\frac{\Gamma_1 \Rightarrow \Delta_1 \quad \Gamma_2 \Rightarrow \Delta_2}{\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}$$

Expansion=Mingle?

Mingle+Contraction entail Expansion:

$$\frac{\varphi, \Gamma \Rightarrow \Delta \quad \varphi, \Gamma \Rightarrow \Delta}{\varphi, \varphi, \Gamma, \Gamma \Rightarrow \Delta, \Delta} \; (Mingle) \\ \frac{\varphi, \varphi, \Gamma, \Gamma \Rightarrow \Delta, \Delta}{\varphi, \varphi, \Gamma \Rightarrow \Delta} \; (Contractions)$$

• Expansion+1 entail Mingle:

$$\frac{1 \Rightarrow 1}{1 \Rightarrow 1, 1} (Exp) \quad \frac{\Gamma_1 \Rightarrow \Delta_1}{1, \Gamma_1 \Rightarrow \Delta_1} (1 \Rightarrow) \quad \frac{\Gamma_2 \Rightarrow \Delta_2}{1, \Gamma_2 \Rightarrow \Delta_2} (1 \Rightarrow)$$

$$\frac{1, \Gamma_1 \Rightarrow \Delta_1, 1}{1, \Gamma_2 \Rightarrow \Delta_1, 1} (Cut) \quad \frac{\Gamma_2 \Rightarrow \Delta_2}{1, \Gamma_2 \Rightarrow \Delta_2} (Cut)$$

$$\frac{1, \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}{\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2} (Cut)$$

Blame it on &)

• Expansion+ $\{\rightarrow, \&\}$ entail Mingle:

Replace 1 by a sentence of the form

$$(\varphi_1 \to \varphi_1) \& \dots \& (\varphi_n \to \varphi_n)$$

• Expansion+& suffice for deriving $\Rightarrow \varphi, \psi$ from $\Rightarrow \varphi$ and $\Rightarrow \psi$:

$$\frac{\Rightarrow \varphi \Rightarrow \psi}{\Rightarrow \varphi \& \psi} \qquad \frac{\varphi \Rightarrow \varphi}{\varphi \& \psi \Rightarrow \varphi} \qquad \psi \Rightarrow \psi$$

$$\Rightarrow \varphi, \varphi \& \psi \qquad \varphi \& \psi \Rightarrow \psi$$

$$\Rightarrow \varphi, \psi$$

The Substructural System RMI_m

Structural Rules: Contraction, Expansion

Logical Rules:

$$(\neg \Rightarrow) \qquad \frac{\Gamma \Rightarrow \Delta, \varphi}{\neg \varphi, \Gamma \Rightarrow \Delta} \qquad \frac{\varphi, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \varphi} \qquad (\Rightarrow \neg)$$

$$(\otimes \Rightarrow) \qquad \frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \otimes \psi \Rightarrow \Delta} \qquad \frac{\Gamma_1 \Rightarrow \Delta_1, \varphi \qquad \Gamma_2 \Rightarrow \Delta_2, \psi}{\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2, \varphi \otimes \psi} \quad (\Rightarrow \otimes)$$

$$(\rightarrow \Rightarrow) \quad \frac{\Gamma_1 \Rightarrow \Delta_1, \varphi \qquad \psi, \Gamma_2 \Rightarrow \Delta_2}{\Gamma_1, \Gamma_2, \varphi \rightarrow \psi \Rightarrow \Delta_1, \Delta_2} \qquad \frac{\Gamma, \varphi \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \rightarrow \psi} \qquad (\Rightarrow \rightarrow)$$

Properties of RMI_m

- An equivalent Hilbert-type system $HRMI_m$ is obtained by adding to R_m the mingle axiom $\varphi \otimes \varphi \to \varphi$:
 - 1. A sequent is provable in RMI_m iff its translation is provable in $HRMI_m$. In particular: $\vdash_{RMI_m} \Rightarrow \varphi$ iff $\vdash_{HRMI_m} \varphi$.
 - 2. $\mathcal{T} \vdash_{HRMI_m} \varphi$ iff $\vdash_{RMI_m} \Gamma \Rightarrow \varphi$ for some finite $\Gamma \subseteq \mathcal{T}$.
- Relevant Deduction Theorem: $\mathcal{T}, \varphi \vdash_{RMI_m} \psi$ iff either $\mathcal{T} \vdash_{RMI_m} \psi$ or $\mathcal{T} \vdash_{RMI_m} \varphi \rightarrow \psi$.
- Variable-sharing: If $\vdash_{RMI_m} \varphi \to \psi$ then φ and ψ share a variable.
- If $\vdash_{RMI_m} \varphi \otimes \psi$ then $\vdash_{RMI_m} \varphi$ and $\vdash_{RMI_m} \psi$.

Weakly Characteristic Semantics

The structure $\mathcal{A}_{\omega} = \langle A_{\omega}, \mathcal{D}_{\omega}, \mathcal{O}_{\omega} \rangle$ is defined as follows:

- $A_{\omega} = \{\mathbf{t}, \mathbf{f}, I_1, I_2, I_3, \ldots\}$
- $\mathcal{D}_{\omega} = A_{\omega} \{\mathbf{f}\} = \{\mathbf{t}, I_1, I_2, I_3, \ldots\}.$
- The operations in \mathcal{O}_{ω} are the following:

$$\neg \mathbf{t} = \mathbf{f} \ \neg \mathbf{f} = \mathbf{t} \ \neg I_k = I_k \ (k = 1, 2, \ldots)$$

$$a \otimes b = \begin{cases} \mathbf{f} & a = \mathbf{f} \text{ or } b = \mathbf{f} \\ I_k & a = b = I_k \\ \mathbf{t} & otherwise \end{cases} \qquad a \to b = \begin{cases} \mathbf{t} & a = \mathbf{f} \text{ or } b = \mathbf{t} \\ I_k & a = b = I_k \\ \mathbf{f} & otherwise \end{cases}$$

Weakly Characteristic Semantics (Continued)

Weak soundness and completeness: $\vdash_{RMI_m} \varphi$ iff $\vdash_{\mathcal{A}_{\omega}} \varphi$.

Corollary: $\vdash_{RMI_m} \Gamma \Rightarrow \Delta$ iff for every valuation v in \mathcal{A}_{ω} , either $v(\varphi) = \mathbf{f}$ for some $\varphi \in \Gamma$, or $v(\varphi) = \mathbf{t}$ for some $\varphi \in \Delta$, or there exists k such that $v(\varphi) = I_k$ for every $\varphi \in \Gamma \cup \Delta$.

Scroggs' property: RMI_m does not have a finite (weakly) characteristic matrix, although every proper extension of it does.

Strongly Characteristic Semantics

- $S\!A=[0,1]\times A_\omega$ If $v=\langle x,a\rangle\in S\!A$ then deg(v)=x and val(v)=a.
- $\mathcal{D} = [0,1] \times \mathcal{D}_{\omega}$ (where $\mathcal{D}_{\omega} = \{\mathbf{t}, I_1, I_2, I_3, \ldots\}$).
- $\neg \langle x, \mathbf{t} \rangle = \langle x, \mathbf{f} \rangle$ $\neg \langle x, \mathbf{f} \rangle = \langle x, \mathbf{t} \rangle$ $\neg \langle x, I_k \rangle = \langle x, I_k \rangle$ $deg(u \otimes v) = min\{deg(u), deg(v)\}$

$$val(u \otimes v) = egin{cases} I_k & u = v \ ext{and} \ val(u) = I_k \ & deg(u) \leq deg(v) \ ext{and} \ val(u) = \mathbf{f} \ & deg(u) \geq deg(v) \ ext{and} \ val(v) = \mathbf{f} \ & ext{t} \end{cases}$$
 otherwise

We denote the resulting structure by $\mathcal{S}\mathcal{A}$.

Strongly Characteristic Semantics (Continued)

- Strong soundness and completeness: $\mathcal{T} \vdash_{RMI_m} \varphi$ iff $\mathcal{T} \vdash_{\mathcal{SA}} \varphi$.
- Suppose that $\Gamma \not\vdash_{RMI_m} \varphi$, and that $\Gamma \cup \{\varphi\}$ involves at most n different propositional variables. Then there is a submatrix $\mathcal{SA}(\Gamma,\varphi)$ of \mathcal{SA} such that $\mathcal{SA}(\Gamma,\varphi)$ has at most 3n-1 elements, and there is a valuation in it which is a model of Γ , but not a model of φ .
- For n > 0 there is a theory T_n in p_1, \ldots, p_n such that $T_n \not\vdash_{RMI_m} p_1$, but any model of T_n in \mathcal{SA} which is not a model of p_1 involves at least n different degrees, and at least 3n-1 different elements of SA.

Related Partial Orders

On \mathcal{A}_{ω} : $a \leq^{1} b$ if either a = b or $a = \mathbf{f}$ or $b = \mathbf{t}$ ($\mathbf{f} \leq^{1} I_{k} \leq^{1} \mathbf{t}$).

On \mathcal{SA} :

- $\langle x, a \rangle \preceq_{\otimes} \langle y, b \rangle$ if either $x < y \& a \in \{\mathbf{t}, \mathbf{f}\}$, or x = y and either a = b or $a = \mathbf{f}$ or $a = \mathbf{t} \& b \neq \mathbf{f}$. $\langle x, \mathbf{f} \rangle \preceq_{\otimes} \langle x, \mathbf{t} \rangle \preceq_{\otimes} \langle x, I_k \rangle$, and if x < y then $\langle x, \mathbf{t} \rangle \preceq_{\otimes} \langle y, \mathbf{f} \rangle$.
- $\langle x, a \rangle \leq \langle y, b \rangle$ if either $x = y \& a \leq^1 b$ or $x < y \& a = \mathbf{f}$, or $x > y \& b = \mathbf{t}$.

If x < y then $\langle x, \mathbf{f} \rangle \leq \langle y, \mathbf{f} \rangle \leq \langle y, I_k \rangle \leq \langle y, \mathbf{t} \rangle \leq \langle x, \mathbf{t} \rangle$.

Related Partial Orders (Continued)

- $\langle SA, \preceq_{\otimes} \rangle$ is a lower semilattice, and $u \otimes v = inf_{\preceq_{\otimes}} \{u, v\}$.
- $\langle SA, \preceq \rangle$ is a lattice.
- Denote the lattice operations for \leq by \wedge and \vee . Then:
 - $-u \prec v \text{ iff } u \rightarrow v \in \mathcal{D}.$
 - $-u \wedge v \prec w \text{ iff } u \prec v \rightarrow w.$
- However, D is not closed under ∧!

Enriching the Language with "Additives"

- Add to the language the connectives \land, \lor and the constants \top, \bot .
- Let RMI_{ma} be obtained from RMI_m by adding:

Axioms:

$$\perp, \Gamma \Rightarrow \Delta$$
 $\Gamma \Rightarrow \Delta, \top$

Rules:

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \wedge \psi, \Gamma \Rightarrow \Delta} \qquad \frac{\psi, \Gamma \Rightarrow \Delta}{\varphi \wedge \psi, \Gamma \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \psi}$$

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \wedge \psi, \Gamma \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \varphi \wedge \psi}$$

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{\varphi \vee \psi, \Gamma \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \varphi \vee \psi} \qquad \frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta, \varphi \vee \psi}$$

Condition: in $(\Rightarrow \land)$ and $(\lor \Rightarrow) \Gamma \cup \Delta$ should not be empty!

Enriching the Language with "Additives" (Continued)

- RMI_{ma} is a conservative extension of RMI_m .
- RMI_{ma} has the variable-sharing property.
- RMI_{ma} is sound, but not complete with respect to \mathcal{SA} . It is sound and complete w.r.t. a richer class of lattices.
- A cut-free formulation is obtained by replacing the Expansion rules of RMI_{ma} by the Relevant Mingle rules:

$$\frac{\varphi, \Gamma_1 \Rightarrow \Delta_1 \quad \varphi, \Gamma_2 \Rightarrow \Delta_2}{\varphi, \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2} \qquad \frac{\Gamma_1 \Rightarrow \Delta_1, \varphi \quad \Gamma_2 \Rightarrow \Delta_2, \varphi}{\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2, \varphi}$$

Hypersequential Version of RMI_{ma}

Hypersequent: $s_1 \mid s_2 \mid \ldots \mid s_n$ where s_1, \ldots, s_n are sequents.

• The hypersequential versions of the rules of RMI_{ma} . E.g.:

$$\frac{G \mid \Gamma, \varphi, \psi \Rightarrow \Delta}{G \mid \Gamma, \varphi \otimes \psi \Rightarrow \Delta} \quad \frac{G_1 \mid \Gamma_1 \Rightarrow \Delta_1, \varphi \quad G_2 \mid \Gamma_2 \Rightarrow \Delta_2, \psi}{G_1, G_2 \mid \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2, \varphi \otimes \psi}$$

• The basic External structural rules:

$$\frac{G\mid s\mid s}{G\mid s} \quad \frac{G}{G\mid s}$$

The Logics of $\mathcal{S}\mathcal{A}$ and \mathcal{A}_{ω}

RMI - the logic of SA: Add to RMI_{ma} the Splitting rule:

$$\frac{G \mid \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}{G \mid \Gamma_1 \Rightarrow \Delta_1 \mid \Gamma_2 \Rightarrow \Delta_2}$$

SRMI - the logic of A_{ω} : Add to RMI_{ma} Strong Splitting:

$$\frac{G \mid \Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}{G \mid \Gamma_1 \Rightarrow \Delta_1 \mid \Gamma_2, \Gamma' \Rightarrow \Delta_2, \Delta'}$$

In both cases we have soundness, completeness and cut-elimination.